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STABILITY OF COLLIDING DROPS OF IDEAL LIQUID
V. A, Arkhipov, I. M. Vasenin, UDC 532.52%
and V, F. Trofimov

The determination of the stability conditions of a system of colliding drops is of in-
terest not only as one of the classical problems of fluid mechanics, but is urgent for the
solution of a number of applied problems. A rather detailed analysis of the work on this
problem performed up to 1970 is given in [1]. 1In the last decade interest in the physics of
the interaction of drops has been stimulated by the development of the gasdynamics of two-
phase flows in jets. So far, however, the laws of collision, deformation, coalescence, and
disruption of drops have not been conclusively determined.

In the present article we present the results of an experimental and analvtical study
of the stability of a system of two colliding drops of an ideal liquid. To describe the
interaction of drops quantitatively we use the following dimensionless numbers obtained by
similitude theory and dimensional analysis [2, 3]:

v = D._,/Z)1 (l;‘
is the ratio of the diameters of the drops, We = pu®D,/¢ is the Weber number, 2 = M{/
[(Do/2)7/2wb0] isthe normalized angular momentum. Here

M= mymaudi(my + m,), D, = (Df - 03)1;37 (23

where m; and m, are the masses of the colliding drops, ¢ is the impact parameter, and M is
the angular momentum of the system of drops.

Since for water drops viscous forces are negligibly small in comparison with surface
tension and inertial forces, the effect of dimensionless numbers invelving the viscosity
(e.g., Lp = poDp/n® « 10°, Re = puDy/n ~ 10%) is unimportant.

An experimental study of the types of interaction of water drops for We = 0,1-120 (v =
1.9) showed that for We = 15-50 the interaction is characterized by coalescence of the
drops with a subsequent possible disruption under the action of centrifugal forces [2]. Con~
sequently, it is expedient to seek the limit of stability of a system of drops in this range
of Weber numbers. We have investigated stabilitv conditions of a system of two colliding
dreps for y = 1.15-2.6 and We = 10-50. The apparatus (Fig. 1) consisted of two generators 1
producing counterstreams of water drops whose diameters could be varied from 0.3 x 1072 to
1.2 x 107°® m. The density, dynamic viscosity, and surface tension of the drops of distilled
water were p = 10® kg/m®, n = 107° kg/m " sec, and ¢ = 73 x 107% kg/sec? at 20°C. The rela-
tive velocities u of the colliding drops varied from 1 to 5 m/sec. Three-dimensional photo-
graphs were taken two SKS-1 m motion-picture cameras 2 located at right angles to one another
and perpendicular to the streams of drops. Illumination was provided by photoflood lamps 3

Tomsk. Translated from Zhurnal Prikladnoi Mekhaniki i Tekhnicheskoi Fiziki, Ne. 3, pp.
95-98, May-June, 1983. Original article submitted March 23, 1982.
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with a focusing system 4 to ensure filming by the shadow method. The second motion picture
camera and illumination system located symmetrically with respect to the streams of drops

are not shown in Fig. 1. Photographs were taken at the rate of 1500-3000 frames per sec.

The two synchronous motion picture films obtained were processed together on a decoder. The
results of processing more than 300 collisions are shown in Fig. 2 as plots of Qx vs We for
three values of v (9% is the critical value of the normalized angular momentum). The approx-
imating curves were obtained by the least-squares method:

Q, = 11.38 — 9.507 4 0.13 We — 0.88.10™% We — 0.16.10~*We? -+ 1,907

If for fixed y and We the values of @ lie above the {4 curve, the system of drops is unsta-
ble and breaks up after interaction; if the values of Q fall in the stable region below the
Qs curve, the drops coalesce,

An analytical estimate of the critical levels in the collisions of drops can be obtained
within the framework of the model of an ideal liquid. We seek the dependence of Q4 on Yy
only, assuming that in the type of interaction considered, which is characteristic for We =
10-50 {2], the dependence of Qx on We is unimportant. The validity of this assumption is
confirmed by the experimental results shown in Fig. 2. We consider a simplified model of a
grazing collision in which the impact parameter § * D,/2 + Dp/2. Since the required rela-
tion Q4 (y) does not contain & explicitly, it will hold also for collisions which are not
grazing. If the angular momentum { is less than critical in a grazing collision, one should
expect the drops to coalesce; the system of coalesced drops will revolve, and their centers
of mass will converge. If Q > Qi the drops separate from one another after touching surfa-
ces. For 0 = Q. the drops revolve about the center of mass of the system, not separating

and not coalescing.

The equilibrium conditions in the last case can be found from the minimum potential
energy variational principle [4] by equating to zero the first variation of the potential
energy of the system in a coordinate system rotating with constant angular velocity w. The
expression for the potenital energy of the system of drops has the form [4]

E = —(1/2[e? + oS, 3)

where I is the moment of inertia of the system.

We calculate the area S approximately by assuming it is equal to the sum of the surface
S, and 52 of the two drops minus twice the area of contact. Then, to within quantities of
the order h® (Fig., 3), we obtain

S = 8§; + S, — 2xhDD,/ (D, + D»),
(4)

where h = h, + h, is the depth of penetration.

Since the effect of viscosity is not taken into account in the interaction, in the revo-
lution of the drops under equilibrium conditions we consider only the revolution of their
centers of mass about the center of mass of the system. We neglect the rotation of each
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drop around its own center of mass. In this approximation the moment of inertia of the sys-
tem with respect to its center of mass is

m.m, D D, \2 -
R (e A (5)
mlq-mz 4 4

Substituting Eqs. (4) and (5) into (3), we obtain an expression for the potential energy in
the rotating coordinate system:

o 1 5 7 l‘-;v_‘_( |t ;L‘); So (S, 4 8,y - 2ak ilz-’__
Tl U ; Oy : Mie P2 D A+ D,

The system of drops is in equilibrium if in the neighborhood of h = 0 for w = const

DD,

— DT - ES. -
“JUJHV 7 - U. (6}

. S e, (D D,
§F = @ttt Lo 2 7Z>

mo--m,\ 2 P

Substituting (1) and (2) and the relation M = Iw into (6), we obtain

PRLES i & S Y 7
Yy Vs
The curve in Fig. 4 shows Qx as a function of v calculated from Eq. (7). The points are
experimental values of Qs(y) averaged over We. The experimental points for the complex on
the left-hand side of Eq. (7) are shown in Fig. 5 as a function of We. Considering the
spread of the experimental data, these points lie around the value 6.84 t 1.3, which is in
satisfactory agreement with the analytical estimate.

Within the ranges We = 10-50 and v = 1.15-2.6 investigated, Eq. (7) can be recommended
for estimating the limits of stability of a system of two colliding drops of an ideal
liquid.
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