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STABILITY OF COLLIDING DROPS OF IDEAL LIQUID 

V. A. Arkhipov, I. M. Vasenin, 
and V. F. Trofimov 

UDC 532.529 

The determination of the stability conditions of a system of colliding drops is of in- 
terest not only as one of the classical problems of fluid mechanics, but is urgent for the 
solution of a number of applied problems. A rather detailed analysis of the work on this 
problem performed up to 1970 is given in [I]. In the last decade interest in the physics of 
the interaction of drops has been stimulated by the development of the gasdynamics of two- 
phase flows in jets. So far, however, the laws of collision, deformation, coalescence, and 
disruption of drops have not been conclusively determined. 

In the present article we present the results of an experimental and analytical study 
of the stability of a system of two colliding drops of an ideal liquid. To describe the 
interaction of drops quantitatively we use the following dimensionless numbers obtained by 
similitude theory and dimensional analysis [2, 3]: 

Y =: D~/D1 ( 1 )  

is the ratio of the diameters of the drops, We = 0u2D1/~ is the Weber number, ~ = IM / 
[(Do/2)7/2~po] is the normalized angular momentum. Here 

M : m~m~u6,( , , , ,  + ,,~J, D O : (D~-Z-D~)~"~, ( 2 )  

where m~ and m2 are the masses of the colliding drops, 6 is the impact parameter, and M is 
the angular momentum of the system of drops. 

Since for water drops viscous forces are negligibly small in comparison with surface 
tension and inertial forces, the effect of dimensionless numbers involving the viscoslty 
(e.g., Lp = poD2/~ 2 ~ 105 , Re = puD:/q ~ 103 ) is unimportant. 

An experimental study of the types of interaction of water drops for We = 0.1-120 (v = 

1.9) showed that for We = 15-50 the interaction is characterized by coalescence of the 
drops with a subsequent possible disruption under the action of centrifugal forces [2]. Con- 
sequently, it is expedient to seek the limit of stability of a system of drops in this range 
of Weber numbers. We have investigated stabilitv conditions of a system of two colliding 
dreps for y = 1.15-2.6 and We = 10-50. The apparatus (Fig. i) consisted of two generators ! 
producing counterstreams of water drops whose diameters could be varied from 0.3 x 10 -3 to 
1.2 x 10 -3 m. The density, dynamic viscosity, and surface tension of the drops of distilled 
water were p = 103 kg/m 3, n = i0 -3 kg/m' sec, and ~ = 73 x 10 -3 kg/sec 2 at 20~ The rela- 
tive velocities u of the colliding drops varied from ! to 5 m/see. Three-dimensional photo- 
graphs were taken two SKS-i m motion-picture cameras 2 located at right angles to one another 
and perpendicular to the stremms of drops. Illumination was provided by photoflood lamps 3 
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with a focusing system 4 to ensure filming by the shadow method. The second motion picture 
camera and illumination system located symmetrically with respect to the streams of drops 
are not shown in Fig. i. Photographs were taken at the rate of 1500-3000 frames per sec. 
The two synchronous motion picture films obtained were processed together on a decoder. The 
results of processing more than 300 collisions are shown in Fig. 2 as plots of ~, vs We for 
three values of y (~, is the critical value of the normalized angular momentum). The approx- 
imating curves were obtained by the least-squares method: 

Q, = 1 t .38- -9 .507  q-0A3We--0.88.10-~?We--0.t6.10-~We~ + t,907~. 

I f  f o r  f i x e d  y and We t h e  v a l u e s  of ~ l i e  above  t h e  ~ ,  c u r v e ,  t h e  s y s t e m  of  d r o p s  i s  u n s t a -  
b l e  and b r e a k s  up a f t e r  i n t e r a c t i o n ;  i f  t h e  v a l u e s  of  ~ f a l l  i n  t he  s t a b l e  r e g i o n  be low the  
~ ,  c u r v e ,  t h e  d r o p s  c o a l e s c e .  

An a n a l y t i c a l  e s t i m a t e  of  t h e  c r i t i c a l  l e v e l s  i n  t h e  c o l l i s i o n s  o f  d r o p s  can  be o b t a i n e d  
w i t h i n  t h e  f ramework  o f  t h e  model  of  an i d e a l  l i q u i d .  We s e e k  t h e  d e p e n d e n c e  of  ~ ,  on u 
o n l y ,  a s suming  t h a t  i n  t h e  t y p e  of  i n t e r a c t i o n  c o n s i d e r e d ,  which  i s  c h a r a c t e r i s t i c  f o r  We = 
10-50 [ 2 ] ,  t h e  d e p e n d e n c e  of  ~ ,  on We i s  u n i m p o r t a n t .  The v a l i d i t y  of  t h i s  a s s u m p t i o n  i s  
c o n f i r m e d  by t h e  e x p e r i m e n t a l  r e s u l t s  shown i n  F i g .  2. We c o n s i d e r  a s i m p l i f i e d  model  of  a 
g r a z i n g  c o l l i s i o n  i n  which  the  i m p a c t  p a r a m e t e r  6 c D1/2 + D2/2.  S i n c e  t h e  r e q u i r e d  r e l a -  
t i o n  ~ , ( y )  does  n o t  c o n t a i n  6 e x p l i c i t l y ,  i t  w i l l  h o l d  a l s o  f o r  c o l l i s i o n s  which  a r e  n o t  
g r a z i n g .  I f  t h e  a n g u l a r  momentum ~ i s  l e s s  t h a n  c r i t i c a l  i n  a g r a z i n g  c o l l i s i o n ,  one s h o u l d  
e x p e c t  t he  d r o p s  to  c o a l e s c e ;  t h e  s y s t e m  of c o a l e s c e d  d r o p s  w i l l  r e v o l v e ,  and t h e i r  c e n t e r s  
of mass w i l l  c o n v e r g e .  I f  fi > ~ ,  t h e  d r o p s  s e p a r a t e  f rom one a n o t h e r  a f t e r  t o u c h i n g  s u r f a -  
c e s .  For  ~ = ~ ,  t h e  d r o p s  r e v o l v e  a b o u t  t he  c e n t e r  of  mass  of  t h e  s y s t e m ,  n o t  s e p a r a t i n g  
and n o t  c o a l e s c i n g .  

The e q u i l i b r i u m  c o n d i t i o n s  i n  t h e  l a s t  c a s e  can  be found  from t h e  minimum p o t e n t i a l  
e n e r g y  v a r i a t i o n a l  p r i n c i p l e  [4] by e q u a t i n g  t o  z e r o  t h e  f i r s t  v a r i a t i o n  of  t h e  p o t e n t i a l  
e n e r g y  of t h e  s y s t e m  i n  a c o o r d i n a t e  s y s t e m  r o t a t i n g  w i t h  c o n s t a n t  a n g u l a r  v e l o c i t y  ~. The 
e x p r e s s i o n  f o r  t h e  p o t e n i t a l  e n e r g y  o f  t h e  s y s t e m  of d r o p s  has  t h e  form [4] 

E : - - (1 /2) I~  2 + oS, (3) 

where  I i s  t h e  moment of  i n e r t i a  of  t h e  s y s t e m .  

We c a l c u l a t e  t h e  a r e a  S a p p r o x i m a t e l y  by a s suming  i t  i s  e q u a l  t o  t he  sum of t he  s u r f a c e  
Si and $2 of  t h e  two d r o p s  minus  t w i c e  t h e  a r e a  of  c o n t a c t .  Then,  to  w i t h i n  q u a n t i t i e s  of  
t he  o r d e r  h 2 ( F i g .  3 ) ,  we o b t a i n  

S = S i ~ - S z - - 2 ~ h D i D 2 / ( D i  + D2), 
(4) 

where h = hl + h= is the depth of penetration. 

Since the effect of viscosity is not taken into account in the interaction, in the revo- 
lution of the drops under equilibrium conditions we consider only the revolution of their 
centers of mass about the center of mass of the system. We neglect the rotation of each 
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drop around its own center of mass. In this approximation the moment of inertia of the sys- 
tem with respect to its center of mass is 

m~m 2 . (Oj  , ) 2  
I - -  r o T : 7 - -  k '2 , D'2:~ k (5) 

Substituting Eqs. (4) and (5) into (3), we obtain an expression for the potential energy in 
the rotating coordinate system: 

i m,Tx, (D.12 D ~, )~ D~D,, 

The system of drops is in equilibrium if in the neighborhood of h = 0 for u = const 

, ~l I D  D '~ D l l )  , 
6E =: ,o ; ~ 7 ~  ~G- v - T  - -  hj  - -  2a~ j )  :f / )  ( 6 )  

Substituting (i) and (2) and the relation M = Iv into (6), we obtain 

"~* .;,- (i + ?) V~- ~ 7.26~ ( 7 ,  

The curve in Fig. 4 shows ~, as a function of y calculated from Eq. (7). The points are 
experimental values of ~,(y) averaged over We. The experimental points for the complex on 
the left-hand side of Eq. (7) are shown in Fig. 5 as a function of We. Considering the 
spread of the experimental data, these points lie around the value 6.84 I 1.3, which is in 
satisfactory agreement with the analytical estimate. 

Within the ranges We = 10-50 and y = 1.15-2.6 investigated, Eq. (7) can be recommended 
for estimating the limits of stability of a system of two colliding drops of an ideal 
liquid. 
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